

CONTENT	SKILLS	STANDARD(s)	ANCHOR(S)
3. Two Dimensional	3.01 Apply position, distance, and displacement to a coordibnate		
Kinematics	system.	3.4.12	S11.C.3
	3.02 Describe qualitatively projevtile motion.	3.4.12	S11.C.3
	3.03 Determine acceleration, velocity, time, distance given any of		
	the other variables	3.4.12	S11.C.3
	3.04 Apply principles of this unit to everyday life.	3.8.12	S11.C.3
	3.05 Perform a lab that studies the relationships involved in this		
	unit.	3.7.12	S11.C.3 S11.A.2
	3.06 Write a lab report analyzing the aforementioned lab.	3.2.12	S11.C.3 S11.A.2
4. Newton's Laws	4.01 Compare and contrast kinematics and dynamics.	3.1.12	S11.C.3
	4.02 Define force, qualitatively and quantiatively, and give its unit.	3.4.12	S11.C.3
	4.03 Define Newton's laws qualitatively.	3.1.12	S11.C.3 S11.A.1
	4.04 Apply Newton's 2nd and 3rd laws quantitatively.	3.4.12	S11.C.3 S11.A.1
	4.05 Sketch free body diagrams.	3.1.12	S11.C.3
	4.06 Determine resultant force vectors.	3.4.12	S11.C.3
	4.07 Apply Newton's Law of Universal Gravitation.	3.4.12	S11.C.3 S11.A.1
	4.08 Apply principles of this unit to everyday life.	3.8.12	S11.C.3
	4.09 Perform a lab that studies the relationships involved in this		
	unit.	3.7.12	S11.C.3 S11.A.2
	4.10 Write a lab report analyzing the aforementioned lab.	3.2.12	S11.C.3 S11.A.2
Application of	5.01 Analyze frictional force's relationship to normal force and		
Newton's Laws	material type.	3.1.12	S11.C.3
	5.02 Determine force of friction, normal force, coefficient of friction,		
	acceleration, velocity, time, or mass given other variables.	3.4.12	S11.C.3
	5.03 Compare and contrast static and kinetic friction.	3.1.12	S11.C.3
	5.04 Determine tension.	3.4.12	S11.C.3
	5.05 Apply Hooke's Law.	3.4.12	S11.C.3 S11.A.1
	5.06 Determine centripetal force or one of its subsidiary values.	3.4.12	S11.C.3
	5.06 Apply forces and subsidiary values for objects in contact with		
	each other.	3.4.12	S11.C.3
	5.07 Apply principles of this unit to everyday life.	3.8.12	S11.C.3
	5.08 Perform a lab that studies the relationships involved in this		
	unit.	3.7.12	S11.C.3 S11.A.2
	5.09 Write a lab report analyzing the aforementioned lab.	3.2.12	S11.C.3 S11.A.2

CONTENT	SKILLS	STANDARD(s)	ANCHOR(S)
6. Energy and Work	6.01 Compare nand contrast potential and kinetic energy.	3.1.12	S11.C.3 S11.C.2
	6.02 Analyze qualitaively the conversion of the aformentioned		
	energies relative to their relationship to the conservation of energy.	3.4.12	S11.C.3 S11.C.2
	6.03 Calculate potential energy or one of its subsidiary components		
	given variables.	3.4.12	S11.C.3 S11.C.2
	6.04 Calculate kinetic energy or one of its subsidiary components		
	given variables.	3.4.12	S11.C.3 S11.C.2
	6.05 Calculate work given conservative nad nonconservative		
	forces.	3.4.12	S11.C.3 S11.C.2
	6.06 Compare and contrast work and energy.	3.1.12	S11.C.3 S11.C.2
	6.07 Analyze, qualitatively and quantitatively, the conversion of		
	work and energy.	3.4.12	S11.C.3 S11.C.2
	6.08 Calculate power or its subsidiary components given other		
	variables.	3.4.12	S11.C.3
	6.09 Recognize proper units for the variables of this unit.	3.4.12	S11.C.3
	6.09 Apply principles of this unit to everyday life.	3.8.12	S11.C.3
	6.10 Perform a lab that studies the relationships involved in this		
	unit.	3.7.12	S11.C.3 S11.A.2
	6.11 Write a lab report analyzing the aforementioned lab.	3.2.12	S11.C.3 S11.A.2
7. Collision and	7.01 Define momentum ,qualitatively and qualitatively, and give its		
Momentum	units.	3.1.12	S11.C.3
	7.02 Calculate momentum or one of its subsidiary components		
	given variables.	3.4.12	S11.C.3
	7.03 Apply Newton's 2nd law to mometum.	3.4.12	S11.C.3 S11.A.1
	7.04 Apply the momentum-impulse theory qualitatively and		
	qualitatively.	3.4.12	S11.C.3
	7.05 Apply the law of conservation of momentum.	3.4.12	S11.C.3
	7.06 Compare and contrast collision types.	3.1.12	S11.C.3
	7.07 Calculate mass, velocity, and associtaeted variables for		
	collisions.	3.4.12	S11.C.3
	7.08 Apply principles of this unit to everyday life.	3.8.12	S11.C.3
	7.09 Perform a lab that studies the relationships involved in this		
	unit.	3.7.12	S11.C.3 S11.A.2
	7.10 Write a lab report analyzing the aforementioned lab.	3.2.12	S11.C.3 S11.A.2

CONTENT	SKILLS	STANDARD(s)	ANCHOR(S)
8. Rotational	8.01 Convert degrees, radians, arc lengths.	3.4.12	S11.C.3
Kinematics	8.02 Define angular position, velocity, and acceleration.	3.4.12	S11.C.3
	8.03 Calculate angular velocity and acceleration.	3.4.12	S11.C.3
	8.04 Compare and contrast linear and angular formulae and		
	related units.	3.1.12	S11.C.3
	8.05 Solve angular formula's for time, disp., velocity, and		
	acceleration.	3.4.12	S11.C.3
	8.06 Compare and contrast tangential and centripetal acceleration.	3.1.12	S11.C.3
	8.07 Describe rolling motion.	3.4.12	S11.C.3
	8.08 Determine rotational kinetic energy and inertia.	3.4.12	S11.C.3 S11.C.2
	8.09 Apply the theory of conservation of energy to rotating objects.	3.4.12	S11.C.3 S11.C.2
	8.10 Apply principles of this unit to everyday life.	3.8.12	S11.C.3
	8.11 Perform a lab that studies the relationships involved in this		
	unit.	3.7.12	S11.C.3 S11.A.2
	8.12 Write a lab report analyzing the aforementioned lab.	3.2.12	S11.C.3 S11.A.2